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The simplest model without control

Stochastic Modeling and Simulations of

Thermostatically Controlled Loads

We study a stochastic model of an ensemble of Thermostatically Controlled 

Loads. The study includes direct Markov Chain simulations of the ensemble, validation of the 

results against the Fokker-Planck type of theory in the regimes amenable for analytics, and 

then numerical exploration of various non-equilibrium properties of the system in more 

challenging regimes, e.g. analyzing response to demand response perturbations of practical 

interest. This is an early report on the study aimed at designing new controls of the TCL 

ensembles.

Abstract

Two states control modelling

In the two states control modeling the state of a customer is described by the inside 

temperature, denoted by T and a discrete variable j that attains values j = 2 and j = 1 for the 

device (air conditioner) being off and on, respectively. Each regime is given by the Langevin

equation aforementioned:

 𝑇 = −
1

𝜏
(𝑇 − 𝑇𝑗) + 𝜉(𝑇, 𝑡), 

where 𝑇2 and 𝑇1 are the outside temperature and the inside temperature for permanently 

working air conditioner. We set dead-bands by initiating the bounds of the comfort zone 𝑇𝑑𝑜𝑤𝑛
and 𝑇𝑢𝑝. Achieving one of them we change over the conditioner program.

The system of Fokker-Plank equations, established for such a model: 
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where 

𝑓𝑗 = −
1

𝜏
𝑇 − 𝑇𝑗

𝑟12 𝑇 = r ∙ θ(𝑇 − 𝑇𝑢𝑝)

𝑟21 𝑇 = r ∙ θ(𝑇 − 𝑇𝑑𝑜𝑤𝑛)

We use 𝑟 → ∞ limit, because it is a correct way to describe the situation of instantaneous 

switching, once out of range. 

The simplest model describes a behavior of a large number N of identical customers under the effect of the ambient. The state of a customer is 

characterized by the temperature, denoted by T. Stochastic dynamics for the temperature relaxation process is given by the Langevin equation:

 𝑇 = −
1

𝜏
(𝑇 − 𝑇𝑜𝑢𝑡) + 𝜉(𝑇, 𝑡), where the Gaussian noise 𝜉(𝑇, 𝑡) is assumed be      

< 𝜉 𝑡 > = 0

< 𝜉 𝑡1 𝜉 𝑡2 > = 𝐷 ∙ 𝛿(𝑡1 − 𝑡2)

The Fokker-Plank equation, established for such a system: The solution: 
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The simple iteration method in application to the Langevin equation: 𝑇𝑖+1 = 𝑇𝑖 −
𝑑𝑡

𝜏
𝑇𝑖 − 𝑇𝑜𝑢𝑡 + 𝜉 𝑑𝑡.

Results of the simplest model simulations
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The stationary temperature distribution

Green line – solution to the Fokker-Plank

equation

The average temperature dependence on time.

Blue line    – simulation result

Green line – theoretically established function

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡 = 𝑇𝑜𝑢𝑡 − (𝑇𝑜𝑢𝑡−𝑇0)𝑒
−  𝑡 𝜏

The dispersion dependence on time.

Blue line    – simulation result

Green line – theoretically established function

𝜎 𝑡 =
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2
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Results of the two states control model simulations
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Time

The average temperature dependence on time.

Perturbations are quite high at the beginning, but they are

decreasing in time.

N = 100 000 Mtime = 1000 dt = 0.01 D = 0.3 𝜏 = 0.3
𝑇0 = 100𝐶 𝑇1 = 200𝐶 𝑇2 = 240𝐶 𝑇𝑑𝑜𝑤𝑛 = 210𝐶 𝑇𝑢𝑝 = 230𝐶

A range of parameters, such as D, 𝜏, 𝑇𝑜𝑢𝑡, N and Mtime, effect the temperature relaxation process. The more D or 𝜏 are, the wider the temperature 

distribution is and the more the stationary dispersion value is. The less dt is, the closer to reality we are, but the more time steps we have to do to achieve 

the stationarity so the more the time of calculations is. The diminution between 𝑇𝑜𝑢𝑡 and 𝑇0 influences the relaxation time. 

N = 50 000 Mtime = 1000 (dt = 0.01)          D = 0.3          𝜏 = 0.3 𝑇𝑜𝑢𝑡 = 200𝐶 𝑇0 = 150𝐶

Simulation parameters 
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The temperature of a random customer on time.

Because of control the customers go back and forth

between dead-bands passing round.

The dispersion dependence on time.

While all customers are switched off/on, the dispersion

is as the same as in the simplest case without control.

Perturbations of the dispersion are decreasing in time

quite slowly.
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The number of ON-state customers on time.

Because of noise perturbations are decreasing in

time and approaching to N/2. If we set, for example,

heating force bigger than the freezing one, the

stationary number will be bigger.
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The stationary temperature distribution for ON-state 

customers

The peak is shifted to the left because the freezing force is

getting less effective with the temperature decreasing.

The stationary temperature distribution for OFF-state customers

The peak is shifted to the right because the heating force is getting

less effective with the temperature increasing.
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The stationary temperature distribution for all customers

N = 200 000 Mtime = 500 (dt = 0.01)

D = 0.3 𝜏 = 0.3

𝑇0 = 100𝐶
𝑇1 = 200𝐶 𝑇2 = 240𝐶
𝑇𝑑𝑜𝑤𝑛 = 210𝐶 𝑇𝑢𝑝 = 230𝐶

Simulation parameters 

The probabilities of having any temperature from 21.6℃ to 22.4℃
are the same. The character of distribution tails is effected by

noise.
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The stationary temperature distribution for ON-

state customers

The freezing force is negligible close to 𝑇1.

The stationary temperature distribution for OFF-

state customers

The heating force is negligible close to 𝑇2.
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Temperature

The stationary temperature distribution for all customers

N = 200 000 Mtime = 500 (dt = 0.01)

D = 0.3 𝜏 = 0.3

𝑇0 = 100𝐶
𝑇1 = 200𝐶 𝑇2 = 240𝐶
𝑇𝑑𝑜𝑤𝑛 = 200𝐶 𝑇𝑢𝑝 = 240𝐶

Simulation parameters 

The closer to dead-band the temperature is, the

more important the role of noise becomes.

Simulation parameters 

Conclusion and plans for future

We have researched some system properties concerning to stationary temperature distributions and some time-variable characteristics in different regimes. These results are preliminary. In the nearest future we are planning to validate our results

theoretically. The system behavior researching brings us to creation of an algorithm of demand-response control.


